theworldismine13
God Emperor of SOHH
Game Theory Calls Cooperation Into Question
https://quantadev.wpengine.com/20150212-game-theory-calls-cooperation-into-question/
https://quantadev.wpengine.com/20150212-game-theory-calls-cooperation-into-question/
When the manuscript crossed his desk, Joshua Plotkin, a theoretical biologist at the University of Pennsylvania, was immediately intrigued. The physicist Freeman Dyson and the computer scientist William Press, both highly accomplished in their fields, had found a new solution to a famous, decades-old game theory scenario called the prisoner’s dilemma, in which players must decide whether to cheat or cooperate with a partner. The prisoner’s dilemma has long been used to help explain how cooperation might endure in nature. After all, natural selection is ruled by the survival of the fittest, so one might expect that selfish strategies benefiting the individual would be most likely to persist. But careful study of the prisoner’s dilemma revealed that organisms could act entirely in their own self-interest and still create a cooperative community.
Press and Dyson’s new solution to the problem, however, threw that rosy perspective into question. It suggested the best strategies were selfish ones that led to extortion, not cooperation.
Plotkin found the duo’s math remarkable in its elegance. But the outcome troubled him. Nature includes numerous examples of cooperative behavior. For example, vampire bats donate some of their blood meal to community members that fail to find prey. Some species of birds and social insects routinely help raise another’s brood. Even bacteria can cooperate, sticking to each other so that some may survive poison. If extortion reigns, what drives these and other acts of selflessness?
![]()
Candace diCarlo
Joshua Plotkin has applied the prisoner’s dilemma to evolving populations.
Press and Dyson’s paper looked at a classic game theory scenario — a pair of players engaged in repeated confrontation. Plotkin wanted to know if generosity could be revived if the same math was applied to a situation that more closely resembled nature. So he recast their approach in a population, allowing individuals to play a series of games with every other member of their group. The outcome of his experiments, the most recent of which was published in December in the Proceedings of the National Academy of Sciences, suggests that generosity and selfishness walk a precarious line. In some cases, cooperation triumphs. But shift just one variable, and extortion takes over once again. “We now have a very general explanation for when cooperation is expected, or not expected, to evolve in populations,” said Plotkin, who conducted the research along with his colleague Alexander Stewart.
The work is entirely theoretical at this point. But the findings could potentially have broad-reaching implications, explaining phenomena ranging from cooperation among complex organisms to the evolution of multicellularity — a form of cooperation among individual cells.
Plotkin and others say that Press and Dyson’s work could provide a new framework for studying the evolution of cooperation using game theory, allowing researchers to tease out the parameters that permit cooperation to exist. “It has basically revived this field,” said Martin Nowak, a biologist and mathematician at Harvard University.
Tit for Tat
Vervet monkeys are known for their alarm calls. A monkey will scream to warn its neighbors when a predator is nearby. But in doing so, it draws dangerous attention to itself. Scientists going back to Darwin have struggled to explain how this kind of altruistic behavior evolved. If a high enough percentage of screaming monkeys gets picked off by predators, natural selection would be expected to snuff out the screamers in the gene pool. Yet it does not, and speculation as to why has led to decades of (sometimes heated) debate.
Researchers have proposed different possible mechanisms to explain cooperation. Kin selection suggests that helping family members ultimately helps the individual. Group selection proposes that cooperative groups may be more likely to survive than uncooperative ones. And direct reciprocity posits that individuals benefit from helping someone who has helped them in the past.
The prisoner’s dilemma helps researchers understand the simple strategies, such as cooperating with generous community members and cheating the cheaters, that can create a cooperative society under the right conditions. First described in the 1950s, the classic prisoner’s dilemma involves a pair of felons who are arrested and placed in separate rooms. Each is given a choice: confess or stay silent. In the best outcome, both say nothing and go free. But since neither knows what the other will do, keeping quiet is risky. If one snitches and the other stays silent, the rat gets a lighter sentence while the quiet partner suffers.
![]()
Olena Shmahalo/Quanta Magazine
Even simple organisms, such as microbes, engage in these types of games. Some marine microorganisms produce molecules that help them gather iron, a vital nutrient. Microbial colonies often have both producers and cheaters — microbes that don’t make the compound themselves, but exploit their neighbors’ molecules.
In a single instance of the prisoner’s dilemma, the best strategy is to defect — squeal on your partner and you’ll get less time. But if the game repeats over and over, the optimal strategy changes. In a single encounter, a vervet monkey that spots a predator is safer if it stays silent. But over the course of a lifetime, the monkey is more likely to survive if it warns its neighbors of impending danger and they do the same. “Each player has the incentive to defect, but overall they will do better if they cooperate,” Plotkin said. “It’s a classic problem for how cooperation can emerge.”
In the 1970s, Robert Axelrod, a political scientist at the University of Michigan, launched a round-robin tournament pitting different strategies against each other. To the surprise of many contenders, the simplest approach won. Simply mimicking the other player’s previous move, a strategy called tit for tat, triumphed over much more sophisticated programs.
Tit-for-tat strategies can be found across the biological world. Pairs of stickleback fish, for example, scout nearby predators in a sort of tit-for-tat duet. If one fish makes the risky move of darting ahead, the other reciprocates with a similar act of bravery. If one hangs back, hoping to let its partner take the risk, the partner also drops back.
Over the last 30 years, scientists have explored more evolutionarily realistic versions of the prisoner’s dilemma than Axelrod’s simple version. Players in a large round-robin tournament start with a varied set of strategies — think of this as their genetically determined fitness. To mimic survival of the fittest, the winner of each interaction begets more offspring, which inherit the same strategy as their parent. The most successful strategies thus grow in popularity over time.
The winning approach depends on a variety of factors, including the size of the group, which strategies are present at the start, and how often players make mistakes. Indeed, adding noise to the game — a random change in strategy that acts as a stand-in for genetic mutation — ends the reign of tit for tat. Under these circumstances, a variant known as generous tit for tat, which involves occasionally forgiving another’s betrayal, triumphs.
The overall flavor of these simulations is optimistic — kindness pays. “The most successful strategies often tend to be the ones that don’t try to take advantage of another person,” Nowak said.
Enter Press and Dyson with a dark dose of despair.