Chinese Physicists Teleport Photons Over 100 Kilometers

NkrumahWasRight Is Wrong

Veteran
Supporter
Joined
May 1, 2012
Messages
46,320
Reputation
5,841
Daps
93,972
Reppin
Uncertain grounds
Teleportation is the extraordinary ability to transfer objects from one location to another without travelling through the intervening space.

The idea is not that the physical object is teleported but the information that describes it. This can then be applied to a similar object in a new location which effectively takes on the new identity.

And it is by no means science fiction. Physicists have been teleporting photons since 1997 and the technique is now standard in optics laboratories all over the world.

The phenomenon that makes this possible is known as quantum entanglement, the deep and mysterious link that occurs when two quantum objects share the same existence and yet are separated in space.

Now the same team says it has smashed this record. Juan Yin at the University of Science and Technology of China in Shanghai, and a bunch of mates say they have teleported entangled photons over a distance of 97 kilometres across a lake in China.

That's an impressive feat for several reasons. The trick these guys have perfected is to find a way to use a 1.3 Watt laser and some fancy optics to beam the light and receive it.

Inevitably photons get lost and entanglement is destroyed in such a process. Imperfections in the optics and air turbulence account for some of these losses but the biggest problem is beam widening (they did the experiment at an altitude of about 4000 metres). Since the beam spreads out as it travels, many of the photons simply miss the target altogether.

So the most important advance these guys have made is to develop a steering mechanism using a guide laser that keeps the beam precisely on target. As a result, they were able to teleport more than 1100 photons in 4 hours over a distance of 97 kilometres.

That's interesting because it's the same channel attenuation that you'd have to cope with when beaming photons to a satellite with, say, 20 centimetre optics orbiting at about 500 kilometres. "The successful quantum teleportation over such channel losses in combination with our high-frequency and high-accuracy [aiming] technique show the feasibility of satellite-based ultra-long-distance quantum teleportation," say Juan and co.

read more here:

http://www.technologyreview.com/blog/arxiv/27843/

Can't wait to order that teleportation device, use it, and assemble in a random location with random items stuck in my body. :win:
 
Top