How politicians poisoned statistics - FT.com
How politicians poisoned statistics
In January 2015, a few months before the British general election, a proud newspaper resigned itself to the view that little good could come from the use of statistics by politicians. An editorial in the Guardian argued that in a campaign that would be “the most fact-blitzed in history”, numerical claims would settle no arguments and persuade no voters. Not only were numbers useless for winning power, it added, they were useless for wielding it, too. Numbers could tell us little. “The project of replacing a clash of ideas with a policy calculus was always dubious,” concluded the newspaper. “Anyone still hankering for it should admit their number’s up.”
This statistical capitulation was a dismaying read for anyone still wedded to the idea — apparently a quaint one — that gathering statistical information might help us understand and improve our world. But the Guardian’s cynicism can hardly be a surprise. It is a natural response to the rise of “statistical bullshyt” — the casual slinging around of numbers not because they are true, or false, but to sell a message.
Politicians weren’t always so ready to use numbers as part of the sales pitch. Recall Ronald Reagan’s famous suggestion to voters on the eve of his landslide defeat of President Carter: “Ask yourself, ‘Are you better off now than you were four years ago?’” Reagan didn’t add any statistical garnish. He knew that voters would reach their own conclusions.
The British election campaign of spring last year, by contrast, was characterised by a relentless statistical crossfire. The shadow chancellor of the day, Ed Balls, declared that a couple with children (he didn’t say which couple) had lost £1,800 thanks to the government’s increase in value added tax. David Cameron, the prime minister, countered that 94 per cent of working households were better off thanks to recent tax changes, while the then deputy prime minister Nick Clegg was proud to say that 27 million people were £825 better off in terms of the income tax they paid.
Could any of this be true? Yes — all three claims were. But Ed Balls had reached his figure by summing up extra VAT payments over several years, a strange method. If you offer to hire someone for £100,000, and then later admit you meant £25,000 a year for a four-year contract, you haven’t really lied — but neither have you really told the truth. And Balls had looked only at one tax. Why not also consider income tax, which the government had cut? Clegg boasted about income-tax cuts but ignored the larger rise in VAT. And Cameron asked to be evaluated only on his pre-election giveaway budget rather than the tax rises he had introduced earlier in the parliament — the equivalent of punching someone on the nose, then giving them a bunch of flowers and pointing out that, in floral terms, they were ahead on the deal.
Each claim was narrowly true but broadly misleading. Not only did the clashing numbers confuse but none of them helped answer the crucial question of whether Cameron and Clegg had made good decisions in office.
To ask whether the claims were true is to fall into a trap. None of these politicians had any interest in playing that game. They were engaged in another pastime entirely.
…
Thirty years ago, the Princeton philosopher Harry Frankfurt published an essay in an obscure academic journal, Raritan. The essay’s title was “On Bullshyt”. (Much later, it was republished as a slim volume that became a bestseller.) Frankfurt was on a quest to understand the meaning of bullshyt — what was it, how did it differ from lies, and why was there so much of it about?
Frankfurt concluded that the difference between the liar and the bullshytter was that the liar cared about the truth — cared so much that he wanted to obscure it — while the bullshytter did not. The bullshytter, said Frankfurt, was indifferent to whether the statements he uttered were true or not. “He just picks them out, or makes them up, to suit his purpose.”
Statistical bullshyt is a special case of bullshyt in general, and it appears to be on the rise. This is partly because social media — a natural vector for statements made purely for effect — are also on the rise. On Instagram and Twitter we like to share attention-grabbing graphics, surprising headlines and figures that resonate with how we already see the world. Unfortunately, very few claims are eye-catching, surprising or emotionally resonant because they are true and fair. Statistical bullshyt spreads easily these days; all it takes is a click.
Consider a widely shared list of homicide “statistics” attributed to the “Crime Statistics Bureau — San Francisco”, asserting that 81 per cent of white homicide victims were killed by “blacks”. It takes little effort to establish that the Crime Statistics Bureau of San Francisco does not exist, and not much more digging to discover that the data are utterly false. Most murder victims in the United States are killed by people of their own race; the FBI’s crime statistics from 2014 suggest that more than 80 per cent of white murder victims were killed by other white people.
Donald Trump on the campaign trail, and the false statistics he retweeted © Getty
Somebody, somewhere, invented the image in the hope that it would spread, and spread it did, helped by a tweet from Donald Trump, the current frontrunner for the Republican presidential nomination, that was retweeted more than 8,000 times. One can only speculate as to why Trump lent his megaphone to bogus statistics, but when challenged on Fox News by the political commentator Bill O’Reilly, he replied, “Hey, Bill, Bill, am I gonna check every statistic?”
Harry Frankfurt’s description of the bullshytter would seem to fit Trump perfectly: “He does not care whether the things he says describe reality correctly.”
While we can’t rule out the possibility that Trump knew the truth and was actively trying to deceive his followers, a simpler explanation is that he wanted to win attention and to say something that would resonate with them. One might also guess that he did not check whether the numbers were true because he did not much care one way or the other. This is not a game of true and false. This is a game of politics.
…
While much statistical bullshyt is careless, it can also be finely crafted. “The notion of carefully wrought bullshyt involves … a certain inner strain,” wrote Harry Frankfurt but, nevertheless, the bullshyt produced by spin-doctors can be meticulous. More conventional politicians than Trump may not much care about the truth but they do care about being caught lying.
Carefully wrought bullshyt was much in evidence during last year’s British general election campaign. I needed to stick my nose in and take a good sniff on a regular basis because I was fact-checking on behalf of the BBC’s More or Less programme. Again and again I would find myself being asked on air, “Is that claim true?” and finding that the only reasonable answer began with “It’s complicated”.
Take Ed Miliband’s claim before the last election that “people are £1,600 a year worse off” than they were when the coalition government came to power. Was that claim true? Arguably, yes.
But we need to be clear that by “people”, the then Labour leader was excluding half the adult population. He was not referring to pensioners, benefit recipients, part-time workers or the self-employed. He meant only full-time employees, and, more specifically, only their earnings before taxes and benefits.
Even this narrower question of what was happening to full-time earnings is a surprisingly slippery one. We need to take an average, of course. But what kind of average? Labour looked at the change in median wages, which were stagnating in nominal terms and falling after inflation was taken into account.
That seems reasonable — but the median is a problematic measure in this case. Imagine nine people, the lowest-paid with a wage of £1, the next with a wage of £2, up to the highest-paid person with a wage of £9. The median wage is the wage of the person in the middle: it’s £5.
Now imagine that everyone receives a promotion and a pay rise of £1. The lowly worker with a wage of £1 sees his pay packet double to £2. The next worker up was earning £2 and now she gets £3. And so on. But there’s also a change in the composition of the workforce: the best-paid worker retires and a new apprentice is hired at a wage of £1. What’s happened to people’s pay? In a sense, it has stagnated. The pattern of wages hasn’t changed at all and the median is still £5.
But if you asked the individual workers about their experiences, they would all tell you that they had received a generous pay rise. (The exceptions are the newly hired apprentice and the recent retiree.) While this example is hypothetical, at the time Miliband made his comments something similar was happening in the real labour market. The median wage was stagnating — but among people who had worked for the same employer for at least a year, the median worker was receiving a pay rise, albeit a modest one.
Another source of confusion: if wages for the low-paid and the high-paid are rising but wages in the middle are sagging, then the median wage can fall, even though the median wage increase is healthy. The UK labour market has long been prone to this kind of “job polarisation”, where demand for jobs is strongest for the highest and lowest-paid in the economy. Job polarisation means that the median pay rise can be sizeable even if median pay has not risen.
Confused? Good. The world is a complicated place; it defies description by sound bite statistics. No single number could ever answer Ronald Reagan’s question — “Are you better off now than you were four years ago?” — for everyone in a country.
So, to produce Labour’s figure of “£1,600 worse off”, the party’s press office had to ignore the self-employed, the part-timers, the non-workers, compositional effects and job polarisation. They even changed the basis of their calculation over time, switching between different measures of wages and different measures of inflation, yet miraculously managing to produce a consistent answer of £1,600. Sometimes it’s easier to make the calculation produce the number you want than it is to reprint all your election flyers.
Very few claims are eye-catching, surprising or emotionally resonant because they are true and fair
Such careful statistical spin-doctoring might seem a world away from Trump’s reckless retweeting of racially charged lies. But in one sense they were very similar: a political use of statistics conducted with little interest in understanding or describing reality. Miliband’s project was not “What is the truth?” but “What can I say without being shown up as a liar?”
Unlike the state of the UK job market, his incentives were easy to understand. Miliband needed to hammer home a talking point that made the government look bad. As Harry Frankfurt wrote back in the 1980s, the bullshytter “is neither on the side of the true nor on the side of the false. His eye is not on the facts at all … except insofar as they may be pertinent to his interest in getting away with what he says.”
Such complexities put fact-checkers in an awkward position. Should they say that Ed Miliband had lied? No: he had not. Should they say, instead, that he had been deceptive or misleading? Again, no: it was reasonable to say that living standards had indeed been disappointing under the coalition government.
Nevertheless, there was a lot going on in the British economy that the figure omitted — much of it rather more flattering to the government. Full Fact, an independent fact-checking organisation, carefully worked through the paper trail and linked to all the relevant claims. But it was powerless to produce a fair and representative snapshot of the British labour market that had as much power as Ed Miliband’s seven-word sound bite. No such snapshot exists. Truth is usually a lot more complicated than statistical bullshyt.
…
On July 16 2015, the UK health secretary Jeremy Hunt declared: “Around 6,000 people lose their lives every year because we do not have a proper seven-day service in hospitals. You are 15 per cent more likely to die if you are admitted on a Sunday compared to being admitted on a Wednesday.”
This was a statistic with a purpose. Hunt wanted to change doctors’ contracts with the aim of getting more weekend work out of them, and bluntly declared that the doctors’ union, the British Medical Association, was out of touch and that he would not let it block his plans: “I can give them 6,000 reasons why.”
How politicians poisoned statistics
In January 2015, a few months before the British general election, a proud newspaper resigned itself to the view that little good could come from the use of statistics by politicians. An editorial in the Guardian argued that in a campaign that would be “the most fact-blitzed in history”, numerical claims would settle no arguments and persuade no voters. Not only were numbers useless for winning power, it added, they were useless for wielding it, too. Numbers could tell us little. “The project of replacing a clash of ideas with a policy calculus was always dubious,” concluded the newspaper. “Anyone still hankering for it should admit their number’s up.”
This statistical capitulation was a dismaying read for anyone still wedded to the idea — apparently a quaint one — that gathering statistical information might help us understand and improve our world. But the Guardian’s cynicism can hardly be a surprise. It is a natural response to the rise of “statistical bullshyt” — the casual slinging around of numbers not because they are true, or false, but to sell a message.
Politicians weren’t always so ready to use numbers as part of the sales pitch. Recall Ronald Reagan’s famous suggestion to voters on the eve of his landslide defeat of President Carter: “Ask yourself, ‘Are you better off now than you were four years ago?’” Reagan didn’t add any statistical garnish. He knew that voters would reach their own conclusions.
The British election campaign of spring last year, by contrast, was characterised by a relentless statistical crossfire. The shadow chancellor of the day, Ed Balls, declared that a couple with children (he didn’t say which couple) had lost £1,800 thanks to the government’s increase in value added tax. David Cameron, the prime minister, countered that 94 per cent of working households were better off thanks to recent tax changes, while the then deputy prime minister Nick Clegg was proud to say that 27 million people were £825 better off in terms of the income tax they paid.
Could any of this be true? Yes — all three claims were. But Ed Balls had reached his figure by summing up extra VAT payments over several years, a strange method. If you offer to hire someone for £100,000, and then later admit you meant £25,000 a year for a four-year contract, you haven’t really lied — but neither have you really told the truth. And Balls had looked only at one tax. Why not also consider income tax, which the government had cut? Clegg boasted about income-tax cuts but ignored the larger rise in VAT. And Cameron asked to be evaluated only on his pre-election giveaway budget rather than the tax rises he had introduced earlier in the parliament — the equivalent of punching someone on the nose, then giving them a bunch of flowers and pointing out that, in floral terms, they were ahead on the deal.
Each claim was narrowly true but broadly misleading. Not only did the clashing numbers confuse but none of them helped answer the crucial question of whether Cameron and Clegg had made good decisions in office.
To ask whether the claims were true is to fall into a trap. None of these politicians had any interest in playing that game. They were engaged in another pastime entirely.
…
Thirty years ago, the Princeton philosopher Harry Frankfurt published an essay in an obscure academic journal, Raritan. The essay’s title was “On Bullshyt”. (Much later, it was republished as a slim volume that became a bestseller.) Frankfurt was on a quest to understand the meaning of bullshyt — what was it, how did it differ from lies, and why was there so much of it about?
Frankfurt concluded that the difference between the liar and the bullshytter was that the liar cared about the truth — cared so much that he wanted to obscure it — while the bullshytter did not. The bullshytter, said Frankfurt, was indifferent to whether the statements he uttered were true or not. “He just picks them out, or makes them up, to suit his purpose.”
Statistical bullshyt is a special case of bullshyt in general, and it appears to be on the rise. This is partly because social media — a natural vector for statements made purely for effect — are also on the rise. On Instagram and Twitter we like to share attention-grabbing graphics, surprising headlines and figures that resonate with how we already see the world. Unfortunately, very few claims are eye-catching, surprising or emotionally resonant because they are true and fair. Statistical bullshyt spreads easily these days; all it takes is a click.
Consider a widely shared list of homicide “statistics” attributed to the “Crime Statistics Bureau — San Francisco”, asserting that 81 per cent of white homicide victims were killed by “blacks”. It takes little effort to establish that the Crime Statistics Bureau of San Francisco does not exist, and not much more digging to discover that the data are utterly false. Most murder victims in the United States are killed by people of their own race; the FBI’s crime statistics from 2014 suggest that more than 80 per cent of white murder victims were killed by other white people.
Donald Trump on the campaign trail, and the false statistics he retweeted © Getty
Somebody, somewhere, invented the image in the hope that it would spread, and spread it did, helped by a tweet from Donald Trump, the current frontrunner for the Republican presidential nomination, that was retweeted more than 8,000 times. One can only speculate as to why Trump lent his megaphone to bogus statistics, but when challenged on Fox News by the political commentator Bill O’Reilly, he replied, “Hey, Bill, Bill, am I gonna check every statistic?”
Harry Frankfurt’s description of the bullshytter would seem to fit Trump perfectly: “He does not care whether the things he says describe reality correctly.”
While we can’t rule out the possibility that Trump knew the truth and was actively trying to deceive his followers, a simpler explanation is that he wanted to win attention and to say something that would resonate with them. One might also guess that he did not check whether the numbers were true because he did not much care one way or the other. This is not a game of true and false. This is a game of politics.
…
While much statistical bullshyt is careless, it can also be finely crafted. “The notion of carefully wrought bullshyt involves … a certain inner strain,” wrote Harry Frankfurt but, nevertheless, the bullshyt produced by spin-doctors can be meticulous. More conventional politicians than Trump may not much care about the truth but they do care about being caught lying.
Carefully wrought bullshyt was much in evidence during last year’s British general election campaign. I needed to stick my nose in and take a good sniff on a regular basis because I was fact-checking on behalf of the BBC’s More or Less programme. Again and again I would find myself being asked on air, “Is that claim true?” and finding that the only reasonable answer began with “It’s complicated”.
Take Ed Miliband’s claim before the last election that “people are £1,600 a year worse off” than they were when the coalition government came to power. Was that claim true? Arguably, yes.
But we need to be clear that by “people”, the then Labour leader was excluding half the adult population. He was not referring to pensioners, benefit recipients, part-time workers or the self-employed. He meant only full-time employees, and, more specifically, only their earnings before taxes and benefits.
Even this narrower question of what was happening to full-time earnings is a surprisingly slippery one. We need to take an average, of course. But what kind of average? Labour looked at the change in median wages, which were stagnating in nominal terms and falling after inflation was taken into account.
That seems reasonable — but the median is a problematic measure in this case. Imagine nine people, the lowest-paid with a wage of £1, the next with a wage of £2, up to the highest-paid person with a wage of £9. The median wage is the wage of the person in the middle: it’s £5.
Now imagine that everyone receives a promotion and a pay rise of £1. The lowly worker with a wage of £1 sees his pay packet double to £2. The next worker up was earning £2 and now she gets £3. And so on. But there’s also a change in the composition of the workforce: the best-paid worker retires and a new apprentice is hired at a wage of £1. What’s happened to people’s pay? In a sense, it has stagnated. The pattern of wages hasn’t changed at all and the median is still £5.
But if you asked the individual workers about their experiences, they would all tell you that they had received a generous pay rise. (The exceptions are the newly hired apprentice and the recent retiree.) While this example is hypothetical, at the time Miliband made his comments something similar was happening in the real labour market. The median wage was stagnating — but among people who had worked for the same employer for at least a year, the median worker was receiving a pay rise, albeit a modest one.
Another source of confusion: if wages for the low-paid and the high-paid are rising but wages in the middle are sagging, then the median wage can fall, even though the median wage increase is healthy. The UK labour market has long been prone to this kind of “job polarisation”, where demand for jobs is strongest for the highest and lowest-paid in the economy. Job polarisation means that the median pay rise can be sizeable even if median pay has not risen.
Confused? Good. The world is a complicated place; it defies description by sound bite statistics. No single number could ever answer Ronald Reagan’s question — “Are you better off now than you were four years ago?” — for everyone in a country.
So, to produce Labour’s figure of “£1,600 worse off”, the party’s press office had to ignore the self-employed, the part-timers, the non-workers, compositional effects and job polarisation. They even changed the basis of their calculation over time, switching between different measures of wages and different measures of inflation, yet miraculously managing to produce a consistent answer of £1,600. Sometimes it’s easier to make the calculation produce the number you want than it is to reprint all your election flyers.
Very few claims are eye-catching, surprising or emotionally resonant because they are true and fair
Such careful statistical spin-doctoring might seem a world away from Trump’s reckless retweeting of racially charged lies. But in one sense they were very similar: a political use of statistics conducted with little interest in understanding or describing reality. Miliband’s project was not “What is the truth?” but “What can I say without being shown up as a liar?”
Unlike the state of the UK job market, his incentives were easy to understand. Miliband needed to hammer home a talking point that made the government look bad. As Harry Frankfurt wrote back in the 1980s, the bullshytter “is neither on the side of the true nor on the side of the false. His eye is not on the facts at all … except insofar as they may be pertinent to his interest in getting away with what he says.”
Such complexities put fact-checkers in an awkward position. Should they say that Ed Miliband had lied? No: he had not. Should they say, instead, that he had been deceptive or misleading? Again, no: it was reasonable to say that living standards had indeed been disappointing under the coalition government.
Nevertheless, there was a lot going on in the British economy that the figure omitted — much of it rather more flattering to the government. Full Fact, an independent fact-checking organisation, carefully worked through the paper trail and linked to all the relevant claims. But it was powerless to produce a fair and representative snapshot of the British labour market that had as much power as Ed Miliband’s seven-word sound bite. No such snapshot exists. Truth is usually a lot more complicated than statistical bullshyt.
…
On July 16 2015, the UK health secretary Jeremy Hunt declared: “Around 6,000 people lose their lives every year because we do not have a proper seven-day service in hospitals. You are 15 per cent more likely to die if you are admitted on a Sunday compared to being admitted on a Wednesday.”
This was a statistic with a purpose. Hunt wanted to change doctors’ contracts with the aim of getting more weekend work out of them, and bluntly declared that the doctors’ union, the British Medical Association, was out of touch and that he would not let it block his plans: “I can give them 6,000 reasons why.”